Новости

Карбоновые Аккумуляторы

09.02.2021

Представляем новую линейку товаров Карбоновые АКБ от наших новых партнеров Компании «ВЕКТОР-БАТТЕРИ»

Инверторы с расширенным функционалом и без часть 7

05.02.2016

Обзор инверторов с расширенным функционалом и без него.

MPPT контроллеры

НаименованиеКПД, %Напряжение питания, U вх, ВГабариты [В×Г×Ш], смМасса без упаковки, кгМаксимальный входной ток, А.
Контроллер КЭС 100/20 MPPT9810012,2x15,5x8,71,220
Контроллер КЭС DOMINATOR MPPT 250/609825035x12x215,060
Контроллер КЭС PRO MPPT 200/609820022x12x193.760
Контроллер КЭС DOMINATOR MPPT 200/1009820035x12x215100

Немного о технологии Maximum Power Point Tracking (MPPT) - это автоматический поиск точки максимальной мощности солнечных панелей в реальном времени.

Примитивные MPPT контроллеры появились на рынке ещё в конце 1980-х годов. Сейчас в продаже уже MPPT контроллеры с современной схемотехникой, надежными и долговечными электронными компонентами и с управлением микропроцессором.

Простые солнечные контроллеры (без технологии MPPT) подключают солнечные панели к аккумулятору практически напрямую, и поэтому напряжение их сравнивается. В реальности же, оптимальное напряжение солнечной панели в солнечную погоду всегда выше напряжения на аккумуляторе, а в пасмурную - ниже. Таким образом, можно с запасом, заведомо увеличить напряжение от солнечных панелей по сравнению с АКБ, соединив их последовательно. Тогда, в пасмурную погоду напряжение солнечных панелей будет всё ещё выше АКБ, а в солнечную – намного выше. Задачу преобразования меняющегося в широком диапазоне входного напряжения и тока, в подходящие для АКБ величины, и выполняет МРРТ контроллер.

Технология MPPT представляет собой наиболее эффективную технологию современных контроллеров заряда. Вычисление максимальной точки эффективности заряда от солнечных панелей, позволяет повысить КПД использования солнечной энергии до 20-30% по сравнению с обычными PWM (ШИМ) солнечными контроллерами. Однако MPPT солнечные контроллеры существенно дороже обычных PWM (ШИМ). Поэтому, недостаток эффективности систем с обычным солнечным контроллером в маломощных системах (если установлено солнечных панелей менее 300 – 400 Вт), можно компенсировать, приобретя на разницу в цене между контроллерами, лишнюю солнечную панель. В случае же если установлены солнечные панели от 400 Вт и более, необходим только солнечный контроллер с технологией MPPT.

Этапы зарядки МРРТ контроллера идентичны этапам зарядки контроллера с PWM (ШИМ). Но МРРТ контроллеры, как писалось выше, являются ещё и преобразователями более высокого напряжения солнечных панелей в более низкое, которое необходимо аккумуляторам (АКБ). А если собрать солнечные панели так, чтобы их общее номинальное напряжение было в 1,5 – 2 раза выше чем напряжение на АКБ, то это позволит солнечному МРРТ контроллеру работать максимально эффективно и получать небольшую энергию даже в пасмурную погоду. Некоторые контроллеры позволяют наращивать входное напряжение ещё выше, что особенно полезно, если солнечные панели находятся на большом удалении (более 20 м). Передача энергии с высоким напряжением позволяет уменьшить её потери. Или, можно увеличивать площадь сечения медных проводов, но этот путь дорогостоящий и не всегда возможен.

График мощности 12-и вольтовой солнечной панели, при 100% освещённости

Этапы зарядки МРРТ контроллера идентичны этапам зарядки контроллера с PWM (ШИМ). Но МРРТ контроллеры, как писалось выше, являются ещё и преобразователями более высокого напряжения солнечных панелей в более низкое, которое необходимо аккумуляторам (АКБ). А если собрать солнечные панели так, чтобы их общее номинальное напряжение было в 1,5 – 2 раза выше чем напряжение на АКБ, то это позволит солнечному МРРТ контроллеру работать максимально эффективно и получать небольшую энергию даже в пасмурную погоду.

Из графика видно, что точка максимальной мощности 12-и вольтовой солнечной панели находится в районе 17 В. Обычный PWM (ШИМ) контроллер работает в диапазоне напряжений солнечной панели в соответствии с допусками аккумуляторов 10,5 – 14,5 В (ниже и выше АКБ портятся).

Солнечные панели по своей сути, это гигантский транзистор, и работают они как источник постоянного тока. Это означает, что ток почти не изменится и при их коротком замыкании (КЗ) и при почти любой нагрузке/напряжении, вплоть до полного снятия нагрузки (разомкнутой цепи) – см. зелёную линию на графике.

Предположим, что на этом графике изображена солнечная панель 12 В 100 Вт. Тогда в точке Ток КЗ панели (её выводы замкнуты между собой и поэтому напряжение на них 0 В) и вплоть до примерно 15 В, ток будет порядка 6,5 А, а в точке максимальной мощности (MPPT заряд) – около 6 А.

Тогда мощность при заряде от PWM (ШИМ) контроллера будет меняться, по мере заряда АКБ, от 65 Вт до 94 Вт (считаем: 6,5 А*10 В = 65 Вт; 6,5 А*14,5 В = 94 Вт). Мощность же забираемая MPPT-контроллером будет всегда (при солнце) 6 А * 17 В = 102 Вт.

Если солнечные панели соединять последовательно на большее напряжение, обеспечивая его запас, то добавится эффективность использования в пасмурную погоду (и хотя отдача в это время будет низкой – лучше хоть что-то, чем ничего). Кроме того, из-за высокого напряжения уменьшатся потери на проводах от солнечных панелей.

Основные преимущества контролеров MPPT по сравнению с PWM (ШИМ) контроллерами:

  • высокий КПД/эффективность;
  • оптимальная работа при затенении части площади солнечных панелей;
  • повышенная отдача при слабой освещенности и при облачной погоде;
  • повышенная отдача при повышении температуры солнечного модуля (что ведет к снижению его мощности), и при отрицательных температурах воздуха (что, соответственно, ведёт к увеличению мощности);
  • использование более высокого входного напряжения, позволяет уменьшить сечение кабелей;
  • позволяет увеличить дистанцию от панелей до контроллера.

МРРТ контроллеры очень эффективны, КПД преобразования обычно 97 – 98 %.

Солнечные МРРТ контроллеры премиум-класса отличаются от более дешевых МРРТ контроллеров:

  • Большей мощностью.
  • Высоким качеством и надёжностью.
  • Наличием электронного табло, на котором отображаются все параметры и настройки.
  • Высоким допустимым входным диапазоном напряжений (обычно до 150 В).
  • Автоматическим выбором напряжений установленных АКБ (обычно от 12 до 48 В).
  • Наличием контроля других потребителей энергии АКБ.
  • Ведением статистики и др.

Серьёзные системы собираются с АКБ, соединёнными на 48 В, и на это напряжение, дешёвые контроллеры MPPT почти не встречаются